Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

نویسندگان

  • Adriana Ramos-Ruiz
  • Chao Zeng
  • Reyes Sierra-Alvarez
  • Luiz H Teixeira
  • Jim A Field
چکیده

This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets.

We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and Cd...

متن کامل

CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II-VI or III-V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent op...

متن کامل

Erik Herz Masters thesis 2h.PDF

Luminescent quantum dots (QDs) or rods are semiconductor nano-particles that may be used for a wide array of applications such as in electro-optical devices, spectral bar coding, tagging and light filtering. In the case under investigation, the nano-particles are cadmium-selenide (CdSe), though they can be made from cadmium-sulfide, cadmium-telluride or a number of other II-VI and III-V materia...

متن کامل

Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating a...

متن کامل

Improving the performance of cadmium telluride solar cell (CdTe) with different buffer layers

In this paper, the performance of the buffer layer of Cadmium Telluride (CdTe) thin film solar cell was optimized using SCAPS software. At first, five different buffer layers including CdS, In2S3, ZnO, ZnSe and ZnS with variable thicknesses from 10 to 100 nm have been replaced in the structure of the solar cell and it has been observed. As the thickness of the buffer layer is increased, the eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2016